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ABSTRACT 

 
The scenario that climate change will lead to higher incidence of crop diseases, 

following geographical distribution of the host and cropping technology, suggests that can 
be positive, negative or neutral depending of multiple interactions between host, 
pathogens and abiotic stress factors. Both plants and pathogens are constantly threatened 
by abiotic stress factors such as high temperature, moisture, drought, salinity, soil pH, 
greenhouse gases, Ultraviolet-B (UVB) radiation and air pollutants. Currently the research 
focused on this topic is inconsistent therefore these interactions are poorly understood. In 
the process of adaptation to these adverse conditions, it is expected that abiotic stress 
factors impact pathogens into a wide range of responses such as changes in life cycles 
(pathogen reproduction – shorter incubation -, dispersal, survival and activity), increased 
incidence, modified pathogenicity, genetically recombination and aggressiveness traits.  
The present review is focused particularly on the impact of abiotic stress factors on cereals 
pathogens and all changes in their life cycles and host-pathogen interaction associated 
with under climate change conditions. However, our study suggest that a better 
understanding of interaction between pathogens and abiotic stress factors can be an 
important mechanism to estimate disease risk on a large scale and to introduce new 
understandings in developing management strategies. 

 
INTRODUCTION 

 

 

During the last decades many 
changes in agricultural system have 
contributed worldwide to significant 
progress in food, fiber, fuel production as 
a consequence of the interaction among 
multiple factors: world population 
increase, urbanization, technical 
progress, income growth, genetically 
progress, improved cropping  
technologies, globalization on food 
production, machinery revolution, 
markets, consumption, faster access to 
the information (ALEXANDRATOS and  
BRUINSMA, 2012; BONCIU, ELENA, 
2012, 2016, 2017; DRAGOMIR, C.L. and 
Elena PARTAL, 2016; MATEI, GH et al., 

2008, 2009, 2010; Elena PARTAL et al.,  
2013, 2014; POPP et al., 2013;  REILLY, 
J. and SCHIMMELPFENNING, D., 2000). 
The question is if this progress is able to 
fix the issues of global food production 
and food security and for how long? 
Additional factors, as climate variability 
and climate changes come to threaten 
both of them when most climate  
projections using GCMs show warming 
for all continental interiors, leading to 
variable responses to the level of each 
ecosystem (Pan et al, 2004; PARRY et  
al., 2004).   

However, the current awareness 
of climate change in the agriculture land 
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use (e.g. land sparing – save some 
natural ecosystems from conversion into 
cropland), crop production and future 
food security appears to be high, 
especially due to high uncertainties about 
future food production (DÖÖS and 
SHAW, 1999) and estimations about 
population increase to 10 billion in 2050. 

The possible increases in 
extreme weather events might cause 
higher yield variability, lower harvestable 
yields, reductions/extensions in land use 
in some areas, introduction of new crop 
species, changes in soil organic matter 
levels, in nitrate leaching risk, in soil 
erosion and salinization, in new crop 
protection challenges (BONEA DORINA, 
2016; BONEA, D. and URECHEAN, V, 
2017;  LEIRLÓS et al., 1999, REILLY, 
1994, 1999; YEO,1999; REILLY and  
SCHIMMELPFENNING, 1999; OLSEN 
and BINDI, 2002; HEYDER et al. 2011; 
PERKINS et al., 2011; SIN GH. and 
PARTAL ELENA, 2010) and also 
changes in crop host and pathogens and 
pests interaction, which will drive  
emergence of infectious diseases in both 
agricultural and non-managed 
ecosystems through multiple pathways 
(COTUNA et al., 2013 a, b; ENGLER et 
al., 2011; HEYDER et al., 2011; 
SCHERM, H., 2004; TEIXEIRA et al., 
2012). Also, the effects of climate change 
and climate variability will impact 
differently food security being location-
specific and societally-specific especially 
in the countries with low income and 
limited adaptive capacity facing significant 
threats to food security (von Brown, 
2007).  

The responses depend on the 
particularities of the agricultural systems 
and on the changes in the crop 
management. There are scenarios that 
climatic change will lead to a higher 
incidence of crop diseases (especially 
plant host and susceptibility, pathogen 
reproduction – shorter incubation - 
dispersal, survival and activity, host-
pathogen relationship) and to a potentially 
larger use of pesticides (NEWTON et al., 
2011; SUTHERST et al., 2011).Thus, 

new pathogens may occur in certain 
regions, while other pathogens may 
decreases to be economically important, 
following geographical distribution of the 
host and cropping technology (COAKLEY 
et al., 1999; GHINI et al., 2008; GHINI 
and HAMADA, 2008;). General tendency 
is that pathogens are likely to remain 
limited to their host distribution and not 
become disconnected from them. There 
is serious concern that climate zones will 
move faster that it is possible for plant 
populations to track them, which is 
expected to determine disproportionate 
extinction of local endemic species 
(LOARIE et al., 2009). However, many 
cereals pathogens exhibit considerable 
capacity for generating, recombining, and 
selecting fit combinations of variants in 
key pathogenicity, fitness, and 
aggressiveness traits that there is little 
doubt that any new opportunities resulting 
from climate change will be exploited by 
them. 

This review aims to discuss 
mainly the impact of climate change on 
wheat pathogens and hostpathogen 
relationship which is very important to 
demonstrate that wheat pathogens can 
adapt to new environment, despite the 
fact that currently we are not able to 
predict accurately the trajectory of each 
pathosystem under climate change.  
However, in the last decade the evidence 
for the measured climate change on 
cereal crops and their associated 
pathogens is starting to be documented. 

 
CLIMATE CHANGE AND 

INTERACTION BETWEEN CEREALS 
HOST AND PATHOGENS 

There are reports of climatic 
factors affecting the interaction between 
cereals and pathogens changing host-
pathogen relationship. Thus, extreme 
temperatures (warmer than long-term 
means, or including lack of, or occurrence 
of, unseasonal frosts), precipitation 
(including snow, hail or extreme 
intensity), wind, light (lack of intensity due 
to cloud or dust), humidity, CO2 and other 
greenhouse gasses have been 
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associated with changes in pathogens life 
cycles, increased incidence, 
pathogenicity, genetically recombination 
and aggressiveness traits, which involves 
the urge to rethink the integrated 
management strategies. These become 
more difficult when rapid changes in the 
climate caused by extreme events are 
likely to lead to disease epidemics 
because control measures are difficult to 
apply quickly enough or on a sufficiently 
large scale to contain the problem. 
However, there is evidence that,  stress 
conditions stimulate the activity of 
retrotransposons enhancing the 
generation of variability in pathogens, 
enhancing mutation rate and new traits 
aggressiveness (ANAYA N and 
RONCERO MIG,1996; NEWTON A.C., 
1988; Halterman D.A. et al., 2003). 
Clearly these and other post-translational 
regulatory mechanisms may contribute to 
adaptive response to climate of 
pathogens.  

There are other examples where 
the distribution ranges of pathogens have 
been shown to change in response to 
climatic variables such as, for 
example, Puccinia striiformis f.sp. tritici in 
response to rainfall patterns in South 
Africa (BOSHOFF et al., 2002). Changes 
in crop rotations in response to climate 
change may also influence the future 
importance of specific pathogens. For 
example, if warming of northern latitudes 
enables forage maize to be grown in the 
rotation then this will leave residues in 
which pathogens such as Fusarium Head 
Blight (FHB) could build up high levels of 
inoculum for subsequent wheat and 
barley crops (MAIORANO et al., 2008). 

However, enhancing crop 
resilience to the effects of climatic stress, 
and stresses in general, might be the 
solution to improve crop performance in 
the relationship with pathogens 
(NEWTON et al., 2009).  

 
CO2, other greenhouse gasses 

and UV-B radiation effects 
Carbon dioxide (CO2), ozone (O3) 

and other greenhouse gasses along 

UV_B radiation are individual climate 
change factors that have direct effects on 
plants and biotic agents (GUDERIAN et 
al., 1985; DOWING, 1988; KRUPA and 
MANNING, 1988; MANNING and 
KEANE, 1988; BAZZAZ, 1990; 
ASHMORE and BELL, 1991; COLLS and 
UNSWORTH, 1992; BAKER and ALLEN, 
1994; ROGERS et al., 1994, 
RUNECKLES and KRUPA, 1994;) 

The changes in the chemical 
composition of atmosphere such as 
increases of carbon dioxide (CO2), 
chlorofluorocarbons (CFCs), methane 
(Ch4) and ozone (O3) concentrations, 
along with increased solar UV-B radiation 
have been wildly reported (BISHOF et al., 
1985; KRUPA and KICKERT, 1989; 
CRUTZEN, 1992; SECKMEYER and 
MCKENZIE, 1992; KERR and 
MCELROY, 1993). There is estimated 
that tropospheric CO2 concentration are 
projected to increase from 355 ppm to 
710 ppm, by the year 2050.  

Changes in CO2 concentration 
increase plant photosynthesis, 
transpiration rate per unit leaf area and 
resources use efficiency for water and 
nitrogen, enhancing wheat canopy, which 
impact both yield (increases in crop yield 
are 10-20% for C3 crops and 0-10% for 
C4 crops according with AINSWORTH 
and LONG (2005) and wheat-pathogen 
relationship (THOMSON et al.,1993; 
THOMPSON and DRAKE, 1994; 
COAKLEY et al. 1999; PRITCHARD et 
al., 1999; DOWNING et al., 2000, JONES 
and CURTIS, 2000; LOLADZE, 2002; LI 
et al. 2003; PANGGA et al., 2013). Thus, 
some types of resistance can be more 
affected in some diseases in wheat (e.g. 
reduced expression of induced resistance 
(PLESSL et al., 2005), due to changes in 
host physiology and in pathogen cycles 
(e.g. higher spore production) leading to 
epidemics (CHAKRABORTY et al., 2003; 
GHINI et al., 2008). Analyzing the effects 
of the increased CO2 concentration on 
wheat pathogens, MANNING and 
TIEDEMANN (1995) emphasized that 
wheat rusts, powdery mildew, leaf spots 
and blights incidence increase due to the 
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effect of carbohydrate contents which 
stimulates sugar-dependent pathogens. 
Also, the amount of primary inoculum due 
to greater overwintering crop debris 
would be also increased. An early study 
on the effects of CO2 effects on cereals 
rusts showed that optimal concentration 
of carbon dioxide for growth of stem rust 
and stripe rust on wheat were higher (0,3-
0,75%) than for crown rust on oats, leaf 
rust on rye and wheat (0,15-0,5%) 
(GASSNER and STRAIB,1930).     

Ozone is likely to have adverse 
effects on plant growth and diseases 
incidence (MANNING et al., 1969; 
DOHMEN, 1988; MANNING and KEANE, 
1988; TIEDEMANN, 1922). Thus, 
TIEDEMANN and FIRSCHING (2000) 
analyzed the combined effect of 
increased CO2 and O3 in wheat leaf rust 
(Puccinia recondita f.sp. tritici) and 
observed that wheat leaf rust was 
strongly inhibited by O3, but unaffected by 
high CO2 concentration. Barley powdery 
mildew was found to be relatively ozone 
tolerant and only inhibited by elevated 
ozone doses acting during germ-tube 
growth (HEAGLE and STRICKLAND, 
1972). Rusts on cereals have been found 
to be insensitive to elevated doses of 
ozone. (HEAGLE, 1970; HEAGLE and 
KEY, 1973).  

High level of SO2 emissions seems 
to be correlated with incidence of 
Phaeosphaeria nodorum and 
Mycosphaerella graminicola in wheat 
(BEARCHELL et al., 2005; FITT et al., 
2011). SHOW et al. (2008) reported that 
fluctuations in amounts of P. nodorum in 
grain were related to changes in spring 
rainfall, summer temperature and national 
SO2 emission. Also, in leaves, annual 
variation in spring rainfall affected both 
pathogens similarly, but SO2 had 
opposite effects. Higher canopy growth 
will promote higher residue amount which 
favors necrotrophic pathogens 
development, while increased roots 
biomass will favor soil-born diseases 
occurrence. However, there is less 
knowledge about potential impact of 
climate change on soil-borne pathogens 

compared to foliar pathogens 
(EASTBURN et al., 2011). Previous 
studies emphasized that the exposure to 
high CO2 concentration affects the 
defensive response in plants against 
pathogens (BRAGA et al., 2006), altering 
cultivar resistance. Wheat pathogens and 
wheat-pathogen relationship are affected 
by CO2 changes, which also interfere with 
uptake of systemic fungicides, with both 
positive and negative effects on efficacy 
(COAKLEY et al., 1999; GHINI et al., 
2008). Studying the impact of increased 
atmospheric CO2 concentration plant 
viruses, MALMSTRÖM and FIELD (1997) 
observed that CO2 enrichment may 
increase the size of plants affected by 
barley yellow dwarf virus (BYDV) 
attenuating the dwarfing symptom due to 
the increase in root biomass and to the 
water-use efficiency by diseased plants, 
positively impacting the disease severity. 
Also, changes in plant growth and 
physiology resulting from higher 
atmospheric CO2 concentration 
associated with changes in temperature 
and precipitation conditions, can affect 
the efficacy of systemic fungicides 
altering their penetration, translocation an 
mode of action into the plants. Changes 
in cultivars susceptibility can determine a 
new fungicide application calendar 
(CHAKRABORTY and PANGGA, 2004; 
PRITCHARD and AMTHOR, 2005). 
MADGWICK et al. (2010) predicted that 
by the 2050s the risk of FHB epidemics 
and the number of crops where 
mycotoxin levels would exceed the limit 
set by the EU will increase across the 
whole of the UK. VÁRY et al. (2015) 
investigated the effects of elevated CO2 
on Septoria tritici blotch (STB), which 
infects leaves and Fusarium head blight 
(FHB), which infects flowers. The results 
showed that elevated CO2 increased the 
severity of both diseases and the 
acclimation of the pathogens and the 
plant worsened disease development. 
Thus, for FHB, the highest disease levels 
were found for plants that had been 
acclimated under elevated CO2 infected 
by pathogens that had also been 
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acclimated at elevated levels affecting 
yield and reducing the number of grains 
by 76% and the weight of grain by 59%. 
In case of a resistant wheat variety it was 
observed that elevated CO2 lead to 27% 
lower number of grains produced was 
also and 20% lower weight of grain due to 
FHB. Also, increasing crop biomass by an 
average 17% by elevated CO2 
(AINSWORTH and LONG, 2005) will 
further increase the amount of pathogen 
inoculum in stubble and crop residues. 
However, further new studies are needed 
to be done about the effect of CO2 and 
other green gases concentrations on 
plant diseases in both controlled and field 
trials under cumulated action of other 
abiotic constrainers. 

Relatively little work has been 
done on the effects of increased UV-B on 
the occurrence and severity of cereal 
diseases, and contradictory results 
showed that UV-B lead to increased 
(BIGGS et al., 1984), decreased infection 
(ORTH et al., 1990) or have no effect.   
 

Temperature effects 
Higher temperatures are expected 

to occur in northern areas which will 
expand the cropping area for cereals by 
2050; further more increased diseases 
severity and Area Under the Diseased 
Curve are expected too (GHINI et al., 
2008). HARVELL et al (2002) argue three 
hypotheses how pathogens will be 
influenced by climate change. He 
suggested that that rising temperatures 
will (i) increase pathogen development 
transmission, and generation number; (ii) 
increase overwinter survival and reduce 
growth restrictions during this period and 
(iii) alter host susceptibility. Warmer 
climates are more favorable for virus-
vectors proliferation, because they can 
complete a greater number of 
reproductive cycles and additional insect 
generations which suggests higher 
incidence of virus diseases in wheat 
(CAMMEL AND KNIGHT, 1992; 
NEILSON AND BOAG, 1996, 
HARRINGTON, 2002; NEWMAN, 2004; 
HARRINGTON ET AL., 2007; DOBSON, 

2009). NEWMAN (2004) pointed out the 
simultaneous effect of higher 
temperatures and elevated CO2 
concentration lead to 10% earlier timing 
of cereal aphids peaks (as much as a 
month earlier) and to 10% increase in 
winged forms, which results in greater 
spread and incidence of Barley yellow 
dwarf virus for which the aphid is the 
vector. Warmer winter temperatures may 
also allow wheat pathogens to overwinter 
in areas where they are limited now by 
cold, increasing the primary inoculum 
amount and causing greater and earlier 
infections during the following crop 
season. Also, warmer temperatures 
associated with cropping practices 
appear to have been associated with 
shifts in plant hosts for some pathogens, 
particularly when talking on long-term 
view (MADGWICK et al., 2011; WEST et 
al., 2012). Thus, Fusarium Head Blight 
(FHB) is expected to enhance higher 
levels of inoculum for subsequent wheat 
and barley crops in warmer northern 
latitudes due to introduction of forage 
maize in crop rotation (MAIORANO et al., 
2008). For example, disease incidence of 
Fusarium head blight in the United 
Kingdom and Germany might increase 
middle of this century, whereas disease 
severity of Septoria tritici blotch might 
decrease in France end of this century 
(JUROSZEK and VON TIEDEMANN, 
2013). Also, it is expected that wheat 
flowering will be around 2 weeks earlier 
by the 2050s (4 weeks earlier if we switch 
to using „Mediteranean-type‟ cultivars) 
and harvest will be 3 weeks earlier (or 5 
weeks). Consideration of these altered 
growth stages is important because 
without it we would conclude that the 
incidence of fusarium ear blight will 
reduce substantially due to a decrease in 
occurrence of suitable wet conditions for 
infection occurring in early flowering 
stage (date) (JUROSZEK. P., VON 
TIEDEMANN, A., 2013). In the case of F. 
graminearum, warmer spring weather will 
increase spore production and additional 
spore release from maize debris is likely 
to lead to an overall increase in fusarium 
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ear blight on wheat. This is an example of 
an indirect effect of climate change on a 
crop disease. Climate change also has an 
impact on food safety, particularly on the 
incidence and prevalence of mycotoxins. 
The main consequence of FHB is that 
trichothecene mycotoxins, such as 
deoxynivalenol (DON), accumulate in the 
grain, presenting a food safety risk and 
health hazard to humans and animals 
(GOSWAMI and KISTLER, 2004). 

Temperature can also affect 
disease resistance in plants, thus 
affecting the incidence and severity of the 
diseases. Ambient temperature 
perception in plants is well recognized 
and plants have been shown to be able to 
detect temperature changes as little as 
1°C (ARGYRIS et al., 2005). The efficacy 
of current resistance genes may be 
compromised under more extreme and 
variable climatic conditions. Thus, 
previous findings emphasized that under 
drought stress, resistance expression can 
be reduced or lost temporary, as well as 
reduced disease symptoms (BITA and 
GERATS, 2013). Also, some organisms 
enhance their ability to generate variants 
as an adaptive response to climate 
change (because pathogens exert very 
intensive selection over few generations), 
changes which can later become fixed 
through conventional mutation and 
recombination (HOVMØLLER et al., 
2016). For example, there is an increased 
range of stem rust a possible explanation 
is that enhanced levels of free radicals 
were found under drought stressed 
conditions.  

The same breakdown problem 
occurred in response to cold stress, 
rainfall stress, but not salt stress 
(STEWART, 2002).  
 

CONCLUSIONS 
 Anthropogenic activities on the 
environment have intensified in the last 
century resulting in a devastating 
increase in greenhouse gases and 
triggering global climate oscillation. In the 
coming years, there could be more 
changes in the biosecurity of food crops 

due to escalating global climate change. 
Along with climate impact a range of 
regional and global political and economic 
factors intensify food insecurity and long 
term vulnerability in certain regions. 
 The impact of climate change also 
need to be considered along with other 
factors that affect crop yields, such as 
specific biotic constrainers (pathogens) 
and its impact on the host-pathogen 
relationship.  

Moreover extreme temperatures 
and precipitation have been associated 
with changes in pathogens life cycles, 
increased incidence, pathogenicity, 
genetically recombination and 
aggressiveness traits.Co2 concentrations 
will continue to increase and we need to 
know more about elevated CO2 effects on 
disease incidence and severity. The 
climate change may affect not only the 
optimal conditions for infection but also 
host specificity and mechanisms of plant 
infection. Changes in the abiotic 
conditions are known to affect the 
microclimate surrounding plants and the 
susceptibility of plants to disease. 

Although, many previous studies 
have emphasized the sensitivity of plants 
to various biotic constrainers, the host-
pathogen interactions are poorly 
understood in the context of climatic 
change. Therefore, the response of 
pathosystems to climate change is of high 
interest currently in order to estimate 
disease risk on a large scale and to 
introduce new understandings in 
developing management strategies in this 
new reality.  

On this terms new models of 
crop and pest and pathogens 
interractions linked with more performant 
climate forcasting monitoring systems, 
breeding for durable resistance in wheat 
and improving modelling of the many 
interacting processes, would be an 
essential investment for future food 
security. 
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