INCREASING FOODER PRODUCTION THROUGH AGROTECHNICAL MEASURES FOR LUCERNE CULTIVATED IN THE HILLY AREA OF OLTENIA

¹NUȚĂ C., ²COTIGĂ C.

¹PhD. Student, University of Craiova, Faculty of Agriculture and Horticulture ²University of Craiova, Faculty of Agriculture and Horticulture

Key words: lucerne, fooder, herbicides, production

ABSTRACT

In the specialized literature are made recommendations on lucerne harrowing without relyng on rigorous experimental data. Our reserch partially confirms this aspect. If is applied and a chemical control of weed, the results are considerable.

INTRODUCTION

It is confirmed the fact that throung lucerne harrowing the soil is ventilated which will allow a more vigorous germination with repercussions on the level of harvest. Also through and appropriate chemical control will be obtained an increased and qualitative production of fooder (Berca, M., 1996; Cotigă, C., 2011; Moisuc A., Coste I., 2000).

MATERIAL AND METHOD

The researches were conducted during the period 2011-2012 at the S.C.D.A. – Şimnic Craiova, the versions taken for the research in the first experimental were:

 V_1 = nonharrowed

 V_2 = harrowed (years I and II)/ in spring

 V_3 = harrowed (years I and II)/ in spring and after each mowing

Other experimental had the following versions:

 V_1 = non-herbicided

 V_2 = Pulsar 40 (EC) post. 1 l/ha

 $V_3 = \text{Kerb } 50 \text{ W post. } 4 \text{ kg/ha}$

 V_4 = Basagran forte (EC) post. 2 l/ha

 V_5 = Pantera 40 (EC) post. 0,7 l/ha

 V_6 = Leopard 5 (EC) post 0,7 l/ha

 $V_7 = Agil 100 (EC) post. 2 I/ha$

RESULTS AND DISCUSSIONS

The results obtained and presented in table 1 concerning the efect of harrow on the production of lucerne dry matter (d.m.) show that, avereged on two years the yields of biomass increased from 8,3 t/ha d.m. for the nonharrowed version reaching 10,6 t/ha d.m. for harrowed version in the I-st and II-nd years early in the spring.

The production increase was of 2,3 t/ha d.m. compared with the testifier taken into consideration, increase statistically significantly distinct.

For the harrowed version years I and II and after each mowing the production level has a decreasing trend fact explained by the destruction of a good part of lucerne shoots by the mechanical machine.

Table 1
The efects of harrowing as a mechanical maintenance work for lucerne, on the production of dry matter (average 2011-2012)

production of ary matter (average 2011 2012)								
Version	Absolute production d.m. t/ha 2011 2012		Average 2011- 2012 d.m. t/ha	Relative production %	Difference	Significance		
Nonharrowed	8,2	8,3	8,3	100	MT	-		
Harrowed (years I and II)/ In spring	9,4	11,7	10,6	128	2,3	**		
Harrowed (years I and II)/ In spring and after each mowing	8,1	9,4	8,8	106	0,5	-		

- 1,1 1,3 1,2 t/ha D.M.
- 2,1 2,4 2,3 t/ha D.M.
- 2,9 3,7 3,3 t/ha D.M.

In the table 2 are presented the weed species and their number in the lucerne sown at S.C.D.A. – Şimnic.

Table 2

weed species								
Weed Species	No. Of weeds per SQ.M							
Chenopodium album	48-366							
Setaria glauca şi Setaria viridis	126-421							
Convolvulus arvensis	8-47							
Xanthium strumarium	0-23							
Solanum nigrum	0-16							
Amaranthus retroflexus	0-19							
Digitaria sanguinalis	0-27							
Echinochloa crus galli	0-14							
Capsela bursa pastoris	1-17							
Poligonum aviculare	3-28							
Ghypsophila muralis	0-3							
Cynodon dactylon	0-4							

From the data obtained and presented in table 3 regarding the herbicides effect on weeds found in the lucerne crops it has been observed:

Used

- All herbicides contributed substantially to weed control compared to the version which did not received any tratament.
- For the version non-herbicided, the total production of biomass was 58,3 t/ha pf which 25,7 t/ha were weeds and 32,6 t/ha were lucerne (in yearl), and in

Table 3

The efects of herbicides on the weeds from the lucerne crops at the S.C.D.A. – Şimnic during the period 2011–2012 (m.v.t./ha)

	Dose I/ha *kg/ha	Age of application	2011				2012			
Version			M.V. Total (T)	Of which weeds	Weed s (%)	Lucerne (T)	M.V. Total (T)	Of which weeds	Weeds (%)	Lucerne (T)
Non- herbicided	-	Post	58,3	25,7	44	32,6	51,0	20,5	40	30,5
Pulsar 40 (E.C.)	1,0	Post	55,6	7,4	13	48,2	58,5	3,1	5	55,4
Kerb 50W	4,0*	Post	52,6	8,9	17	43,7	57,0	4,2	7	52,8
Basagran Forte (E.C.)	2,0	Post	48,4	8,8	18	39,6	51,5	4,1	8	47,4
Pantera 40 (E.C.)	0,7	Post	45,7	9,6	21	36,1	49,4	4,7	9	44,7
Leopard 5 (E.C.)	0,7	Post	45,6	9,9	22	35,7	48,7	4,9	10	43,8
Agil 100 (E.C.)	2,0	Post	42,5	9,8	23	32,7	43,8	4,6	11	39,2

- year II weeds production has a descreasing trend from 44% (2011) to 40% (2012).
- In year II (2012) the precentage of weeds in the lucerne crops for the herbicides versions diminished considerably with oscillations between 5–11% which was experiences on the production of lucerne.

The most effective herbicides were: Pulsar 40 (E.C.) at a dose of 1 l/ha which reduced weeds from 13% in 2011 to 5% in 2012, and the herbicide Kerb 50 W 4 kg/ha which reduced weeds from 17% in 2011 to 7% in 2012 (table 3).

CONCLUSIONS

Lucerne harrowing in the years I and II exploited early in spring brings increased production of over 2,3 t/ha d.m. as a result of soil aeration at the parcel level which allows a vigorously germination.

Due to he high number of weeds in the lucerne crops, is recommended that since its the setting up to be combated chemically (Ciorlaus, A. et. Al, 1968; Moisuc A., Coste I., 2000; Moisuc A., Samfira I., 2002).

The most effective herbicides for weeds control from the lucerne crops are: Pulsar 40 (E.C.) 1 l/ha and Kerb 50 W (4 kg/ha).

BIBLIOGRAPHY

Bălan, C. et al., 1965 – Some measures for increasing the production of lucerne in Oltenia plain. Agricultural Matters Number 8.

Berca, M., 1996 – *Weed control from agricultural crops,* Romanian Farmer Publishing House, Bucharest.

Ciorlaus, A. et. al, 1968 – Experimental results regarding weeds control from young lucernes crops. Agricultural Matters Number 8.

Cotigă, C., 2011 – *Meadow and forage crops,* Sitech Publishing House, Craiova.

Moga I., Maria Schitea, 1996 – *Forage Plants*, Ceres Publishing House, Bucharest.

Moisuc, A., Coste I., 2000 – Organisation des recherches sur les praisies er Roumanie au sein des Universite des Sciences Agronomiques Roumaines.

Moisuc A., Samfira I., 2002 – Etude du fonctionenunt de l'ecosisteme prairial en condistions de nutrition N et P sub limitates. Teza de doctorat INRA France – USAMVB Timisoara.