DEVELOPMENT OF PARASITE BROOMRAPE (OROBANCHE CUMANA WALLR.) IN BRAILA COUNTY IN YEARS 2016 AND 2017

Anton F.G. (1,2), Păcureanu Joiţa M. (1) and Rîşnoveanu L. (3,4)

(1) National Agricultural Research and Development Institute, Fundulea, 1 Nicolae
Titulescu, Fundulea, Calarasi County, 915200, Romania
e-mail: gabi22mai@yahoo.com, mariapacureanu2@yahoo.com, tina@ricic.ro

(2) University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty
of Biotehnology, 59 Mărăşti Blvd, District 1, 011464, Bucharest, Romania,

(3) Agricultural Research Development Station Braila, Viziru km. 9 street, Braila,
Braila County, 818008, Romania, (4) "Dunarea de Jos" University of Galati, Engineering
and Agronomy Faculty of Braila-Agronomy Center for Research and Consultancy and
Environment "Lunca", 29 Calarasi, Braila, Braila County, 810017, Romania,
email: luxita risnoveanu@yahoo.co.uk

Keywords: sunflower, broomrape, testing, genotype

ABSTRACT

In the last two years broomrape became more and more agresive in favorable area for sunflower crop. Because of that, we must tested in every year in natural and artificial condition many genotypes of sunflower to identify new sources of resistance at races of broomrape present in this Braila area. We tested 20 genotypes created at NARDI Fundulea, in artificial conditions, in the greenhouse in 2017 (broomrape collected from Brăila County, Chişcani locality) and under natural conditions in year 2017 on the field of ARDS Braila (Braila County, Chişcani locality), where is races of broomrape more then G and H.

INTRODUCTION

Broomrape parasite (*Orobanche cumana* Wallr.) is obligate root parasitic plant and cause losses on seed yield on sunflower from 10% up to 100%, depending on attack intensity. Soils from south east of Romania are the most favorable for broomrape on sunflower (Pacureanu Joita. M, 2014; Risnoneanu L. et al, 2016). Crop rotation don't have any success to escape from this parasite, because can resist in soil up to 20 years without host plant. 1000 seed weight (TSW) of broomrape is 0.001 g and 1 g contain 250000 seeds (Skoric D. et al,

2012). One plant of broomrape contained 50000 seed who are transported by wind big distances (Vranceanu A., 2000).

Annual wild species are diploid and are more easy do make crossing with cultivated sunflower *Helianthus annuus*, L. (Terzić S. et a., 2016; Seiller G. et al, 2017; Seiller G., 2018). Annual wild *Helianthus argophyllus* was tested for resistance to races of broomrape by many researchers (Labrousse P. et al., 2001; Christov M. et al., 2009; Anton F.G. et al., 2017).

MATERIALS AND METHODS

We tested 13 experimental sunflower hybrids, 4 interspecific hybrids, 1

sintetic population, 1 maintainer line (line B) and 1 restorer line (line C) in artificial

condition in greenhouse at NARDI Fundulea in year 2017 with broomrape collected in year 2016 from Braila area and in natural condition in field infested with broomrape in area Braila in year 2017. Interspecific hybrids was obtained

from crossing with wild anual specie *Helianthus argophyllus*. We make notation about broomrape attack at flowering time when *Orobanche cumana* get out from soil.

RESEARCH RESULTS

Four genotype tested in artificial condition for resistance to broomrape from Braila area 2016 was resistant: H11, H13, SP20

and interspecific hybrid with *Helianthus* argophyllus H 17 (table 1).

Table 1
Result of broomrape attack in artificial condition in greenhouse in Fundulea 2017
(broomrape from area Braila 2016)

No.	Hybrid/Genotype	Name of genotype	Sunflower plant / broomrape
H1	Experimental Hybrid	991A x 17*1	11/176
H2	Experimental Hybrid	1010A x 11-1C	12/216
H3	Experimental Hybrid	1010 A x 17*1	8/48
H4	Experimental Hybrid	1050 A x 17*1	6/36
H5	Experimental Hybrid	1093A x 11-1 C	12/96
H6	Experimental Hybrid	1093A x 17*1	11/22
H7	Experimental Hybrid	V1633A x 17*1	9/18
H8	Experimental Hybrid	1010 A x 11-1 C	7/28
H9	Experimental Hybrid	1010 A x CepC	12/24
H10	Experimental Hybrid	1093 A x CepC	9/18
H11	Experimental Hybrid	1093Arg. A x Cep C	11/0
H12	Experimental Hybrid	1050 A x CepC	9/18
H13	Experimental Hybrid	991 A x 17*1	13/0
H14	Interspecific Hybrid	1010B x H.argophylus	9/54
H15	Interspecific Hybrid	1029B x H.argophyllus	11/66
H16	Interspecific Hybrid	1050B x H.argophyllus	12/60
H17	Interspecific Hybrid	1093B x <i>H.argophyllus</i>	9/0
LB18	Line B	Сер В	8/112
LC19	Line C	Cep C	12/192
SP20	Synthetic population	17*1	11/0

Regarding intensity of broomrape attack in artificial condition, two experimental hybrid (H11 and H13), one interspecific hybrid (H17) and one synthetic population (SP 20) have zero plant of broomrape on sunflower plant tested. (*figure 1*).

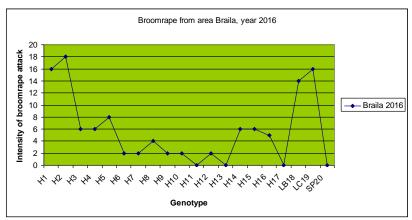


Figure 1. Intensity of broomrape attack in artificial condition (broomrape from Braila area 2016)

In *picture 1*, we present some aspect of infestation with broomrape colected from Braila area 2016, in artificial

condition, in greenhouse at NARDI Fundulea.

Picture 1. Artificial infestation in greenhous in year 2017, with broomrape collected from Braila area 2016

In year 2017, in natural condition, genotype of sunflower tested was't resistant at broomrape from

Braila where is the most virulent races of *Orobanche cumana* Wallr (table 2).

Table 2

Result of broomrane attack in natural condition in field in Braila area 2017

Result of broomrape attack in natural condition in field in Braila area 2017					
No.	Hybrid/ Genotype	Name of genotype	Early sowing (6.04. 2017) Sunflower plant / broomrape	Late sowing (1.06. 2017) Sunflower plant / broomrape	
H1	Experimental Hybrid	991A x 17*1	30/210	19/580	
H2	Experimental Hybrid	1010A x 11-1C	31/95	16/256	
НЗ	Experimental Hybrid	1010 A x 17*1	30/78	18/167	
H4	Experimental Hybrid	1050 A x 17*1	30/150	17/220	
H5	Experimental Hybrid	1093A x 11-1 C	32/142	20/274	
Н6	Experimental Hybrid	1093A x 17*1	36/111	15/227	
H7	Experimental Hybrid	V1633A x 17*1	33/105	19/480	
Н8	Experimental Hybrid	1010A x 11-1 C	29/247	16/454	
H9	Experimental	1010A x CepC	29/361	17/354	

	Llybrid			
<u> </u>	Hybrid			
H 10	Experimental Hybrid	1093A x CepC	31/334	22/506
H 11	Experimental Hybrid	LC1093AxH Arg. X Cep C	26/230	18/370
H 12	Experimental Hybrid	1050A x CepC	27/224	16/228
H 13	Experimental Hybrid	991A x pop.sin. C. 17*1	9/90	7/13
H 14	Interspecific Hybrid	1010B x H.argophyllus	28/340	17/183
H 15	Interspecific Hybrid	1029B x H.argophyllus	20/200	15/260
H 16	Interspecific Hybrid	1050B x H. Argophylius	13/393	17/330
H 17	Interspecific Hybrid	1093B x H. argophyllus	17/236	15/284
LB 18	Line B	Сер В	13/44	22/124
LC19	Line C	Cep C	19/38	18/85
SP20	Synthetic population	17*1	27/117	11/80

In *picture 2*, we present some aspect of high infestation with broomrape in natural condition in Braila area 2017.

There are diferences between intensity of broomrape attack in natural condition of infestation in Braila area 2017 between stage of sowing (figure 2). In case

Picture 2. Braila area 2017, natural infestation on field

of early sowing, genotypes H2, H3, H6, H7, LB18 and LC19 have a good tolerance at broomrape attack but in case of late sowing, situation is changed and only genotypes H13 and LC19 present tolerance at broomrape attack in year 2017.

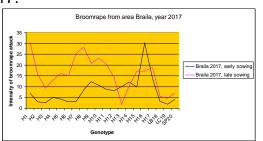


Figure 2. Intensity of broomrape attack in natural condition in area Braila 2017

CONCLUSIONS

In year 2017, in area Braila has development new races of broomrape because genotype of sunflower who was resistant in year 2016 (H 11, H13, H17 and SP 20) lose genetic resistance next

year. None genotype of sunflower tested in natural condition, in Braila area 2017 was resistant at more then races G and H of broomrape.

BIBLIOGRAPHY

Anton F.G., Păcureanu-Joita M., Sauca F., Risnoveanu L., 2017. Evaluating of wild Helianthus species of sunflower and interspecific hybridization for resistance to broomrape (Orobanche cumana Wallr.). Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series: 47(1):7-11.

Christov, M., Batchvarova R., Hristova-Cherbadzhi M., 2009. Wild species of Helianthus L.-sources of resistance to the parasite Orobanche cumana Wallr. Helia 32:65-74.

Labrousse, P., Arnaud M.C,. Serieyes H, Berville A., Thalouarm P., 2001. Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Ann. Bot. 88:859-868.

Pacureanu-Joita 2014. М.. Current situation of sunflower broomrape 3rd Romania, Proc. Int. Symp. on Broomrape (Orobanche spp.) in Sunflower, Cordoba, Spain: 39-43.

Rîşnoveanu L., Păcureanu-Joiţa M., Anton F.G., 2016. <u>The Virulence of Broomrape (Orobanche cumana Wallr.) in Sunflower Crop in Braila Area, in </u>

Romania. Helia, Volume 39, Issue 65 (Dec 2016), p. 189-196.

Seiler G., 2018. Genetic resources of the sunflower crop wild relatives resistance to sunflower broomrape. of Abstract book 4th International Symposium on Broomrape in Sunflower, Bucharest, Romania, 2-4 july 2018. pp.

Seiler G., Qi L.L., Marek L.F., 2017. *Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Science* 57:1083–1101.

Skoric D., Seiler J.,Liu Z., Jan C.C., Miller J., Charlet L., 2012. Sunflower genetics and breeding. Serbian Academy of Sciences and Arts Branch in Novi Sad. pp. 116-124.

Terzić S., Dedić B, Atlagić J., Jocić S., Miladinović D., Jocković M., 2016. Testing annual wild sunflower species for resistance to Orobanche cumana Wallr-Abstract book of International Sunflower Conference, Edirne, Turkey, 2016. p-294-295.

Vrânceanu A.V., 2000. Floarea-soarelui hibridă. Ed. Ceres, Bucureşti. pp. 454-460