CONSIDERATIONS ON STATIC NONLINEAR ANALYSIS OF COUPLING DEVICES - NONLINEAR CURVE STRESSES

MIRCEA I.D.¹⁾, MAICAN E.¹⁾, VLĂDUŢ V.²⁾, DUMITRU I.²⁾, IUGA D.³⁾, GĂGEANU I.²⁾, VOICEA I.²⁾, SORICĂ C.²⁾, UNGUREANU N.¹⁾, GHEORGHE G.²⁾, MARIN E.²⁾, CUJBESCU D.²⁾, BORUZ S.⁴⁾

¹⁾University "POLITEHNICA" Bucharest / Romania; ²⁾INMA Bucharest / Romania; ³⁾SC METROUL SA / Romania; ⁴⁾University of Craiova

Keywords: aggregate, couple, analysis, stresses, forces

ABSTRACT

Coupling devices are the elements ensuring the connection between the power source (tractor) and the towed machine, which must be checked in terms of their safety on the public roads by means of different methods. One of these methods is represented by non-linear static analysis through nonlinear curve stresses, which can in some cases replace verification by endurance testing. The paper presents such an analysis as well as the results obtained from this analysis.

INTRODUCTION

The analysis on the operation of coupling devices of mobile agricultural aggregates (tractor – agricultural machinery), in the view of identifying an "optimum" coupling device, respectively of determining the manner in which it operates adequately, in the case of normal and/or critical stresses, was performed through simulated and accelerated tests, respectively during exploitation on uneven fields, identifying its critical areas (analysis using finite element method – FEM).

Based on these results, an optimization of the coupling device will be achieved, leading to the optimum operation and to an increase of lifetime, in safety conditions for the operator, but especially for other participants in traffic.

Technical conditions for the development of new coupling systems for tractors, trailers and agricultural machinery are harmonized to European regulations, in order to increase the degree of interchangeability and safety in circulation, one of the main reasons why is necessary to study these devices being caused by the multitude of accidents both during operation and in traffic due to the use of inadequate coupling systems (on tractors or trailers, respectively between tractors and agricultural machinery), which are not produced in accordance with certain traffic safety and security specifications [7].

The analysis of the distribution of stresses and strains in the lower rods of the linkage of the tractor, was conducted using triangular type CST finite elements [2]. This study serves to optimize the geometry and shape of the lateral rod by increasing the thickness of the rod in the areas where the stresses are very high, respectively by decreasing the thickness of the rod in areas where the tensions are too small.

Currently, the largest spread is that of carried agricultural machinery, placed behind tractors, the coupling between the machine and the tractor being made by means of the suspension mechanism. The most common suspension mechanisms are those with three-point linkage, currently equipping all agricultural tractors.

The lateral rods (fig. 1) are the basic components of the suspension mechanisms, having different stresses depending on the type of agricultural machine carried and on the work performed. Thus, in the lifting or transporting position, the main stress on the lateral rods is represented by bending, and during the working position, the main stress is tensile.

MATERIALS AND METHOD

The experimental researches for testing the resistance of a coupling device from U650M tractor were conducted using a drawbar (fig. 1), which was previously tested in static and dynamic regimes, through static nonlinear analysis, verifying the situation: nonlinear curve stress.

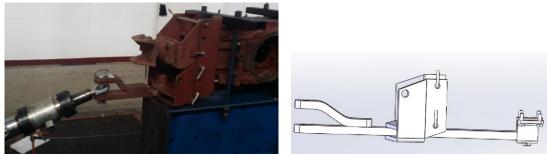


Fig. 1 – Drawbar mounted for experiments

RESULTS

Static nonlinear analysis of the drawbar *Nonlinear curve stresses*

	Mode	I Information	
	×		
		name: Rel-1.0	
	So	lid Bodies	
Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified
Cut-Extrude1	Solid Body	Mass:15.1715 kg Volume:0.00197032 m^3 Density:7700 kg/m^3 Weight:148.681 N	C:\Temp\Carlig_tracto r_poz_2\Rel- 1.1.SLDPRT Jul 01 10:03:30 2017
Cut-Extrude1	Solid Body	Mass:5.02876 kg Volume:0.000653085 m^3 Density:7700 kg/m^3 Weight:49.2818 N	C:\Temp\Carlig_tracto r_poz_2\Rel- 1.2.SLDPRT Jul 01 10:03:30 2017
Fillet2	Solid Body	Mass:2.95203 kg Volume:0.000383381 m^3 Density:7700 kg/m^3 Weight:28.9299 N	C:\Temp\Carlig_tracto r_poz_2\Rel- 1.3.SLDPRT Jul 01 13:31:31 2017
Cut-Extrude4	Solid Body	Mass:18.0411 kg Volume:0.002343 m^3 Density:7700 kg/m^3 Weight:176.803 N	C:\Temp\Carlig_tracto r_poz_2\Rel- 1.4.SLDPRT Jul 02 10:41:55 2017

Material Properties

Model Reference	Properties	Components
*	Name: Alloy Steel Model type: Linear Elastic Isotropic Default failure criterion: Max von Mises Stress Yield strength: 6.20422e+008 N/m^2 Tensile strength: 7.23826e+008 N/m^2 Elastic modulus: 2.1e+011 N/m^2 Poisson's ratio: 0.28 Mass density: 7700 kg/m^3 Shear modulus: 7.9e+010 N/m^2 Thermal expansion coefficient: 1.3e- 005 /Kelvin	SolidBody 1(Fillet2)(Rel-1.3- 1), SolidBody 1(Cut-Extrude4) (Rel-1.4-1)
	•	

Loads and Fixtures

Fixture name	Fixture Image	Fixture Details	
Fixed-6		Entities: Type:	6 face(s) Fixed Geometry

Resultant Forces

Components	Х	Y	Z	Resultant
Reaction force(N)	-73.9722	-0.720269	-22.7045	77.3815
Reaction Moment(N.m)	0	0	0	0

Fixture name	Fixture Image	Fixture Details
Fixed-2		Entities: 4 face(s) Type: Fixed Geometry

Resultant Forces

Components		Х	Y	Z	Resultant
Reaction force(N)	-169.022	-1.08008	-36.0664	172.83
Reaction Mome (N.m)	ent	0	0	0	0
Fixture name		Fixture Image	Fixture Details		
On Flat Faces- 1	×		Entities: 2 face(s) Type: On Flat Faces Translation:,, -0 Units: mm		Flat Faces , -0

Resultant Forces

Components	Х	Y	Z
Reaction force(N)	-8.77142	1.82251	-1.74966
Reaction Moment(N.m)	0	0	0

Load name	Load Image	Load Details	
BearingLoads- 1		Entities: 2 face(s) Coordinate System: Coordinate System1	
	*	Force Values: 25000 0 0 N	

Connector Definitions Pin/Bolt/Bearing Connector

Model Reference	Connector Deta	ils Strength	Strength Details	
Pin Connector-3	Connection With type: reta ring	tion) No Da	ata	

Connector Forces

Туре	X-Component	Y-Component	Z-Component	Resultant
Axial Force (N)	8.3391e-006	3.365	5.9063e-007	3.365
Shear Force (N)	-76.365	0.00018896	1.6274	76.382
Torque (N.m)	-6.7109e-007	-0.2708	-4.7531e-008	-0.2708
Bending moment (N.m)	0.076376	-1.4576e-006	7.2261	7.2265

Model Reference	Connector Detai	Is Strength Details
Pin Connector-4	Entities: 2 face(s) Type: Pin Connection With key type: rotation) Connection With reta type: ring (No translatio	No Data

Connector Forces

Analele Universității din Craiova, seria Agricultură – Montanologie – Cadastru (Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series) Vol. XLVII 2017

Туре	X-Component	Y-Component	Z-Component	Resultant
Axial Force (N)	-3.7343e-006	-1.4478	-3.1799e-007	1.4478
Shear Force (N)	92.657	-0.00024726	37.694	100.03
Torque (N.m)	7.5959e-007	0.2945	6.4683e-008	-0.2945
Bending moment (N.m)	0.12208	-3.8765e-007	0.33131	0.35308

Pin/Bolt/Bearing Connector

Model Reference	Connector Details	Strength Details
Pin Connector-3	Entities:2 face(s) Type: Pin Connection type: With key (No rotation) Connection type: With retaining ring (No translation)	No Data

Connector Definitions

Connector Forces

Туре	X-Component	Y-Component	Z-Component	Resultant
Axial Force (N)	8.3391e-006	3.365	5.9063e-007	3.365
Shear Force (N)	-76.365	0.00018896	1.6274	76.382
Torque (N.m)	-6.7109e-007	-0.2708	-4.7531e-008	-0.2708
Bending moment (N.m)	0.076376	-1.4576e-006	7.2261	7.2265

Model Reference	Connector Details		Strength Details
Pin Connector-4		in /ith key (No otation)	No Data

Connector Forces

Туре	X-Component	Y-Component	Z-Component	Resultant
Axial Force (N)	-3.7343e-006	-1.4478	-3.1799e-007	1.4478
Shear Force (N)	92.657	-0.00024726	37.694	100.03
Torque (N.m)	7.5959e-007	0.2945	6.4683e-008	-0.2945
Bending moment (N.m)	0.12208	-3.8765e-007	0.33131	0.35308

		Contact Informatio
Contact	Contact Image	Contact Properties
		Type: No
Contact Set-4	×	Penetration contact pair Entites: 2 face(s) Friction Value: 0.5 Advanced: Node to surface

Contact/Friction force

Components	Х	Y	Z	Resultant		
Contact Force(N)	9.8392	0.0021283	-40.681	41.854		
Friction Force(N)	3.8076E-012	-1.5354E-015	-2.1294E-013	3.8136E-012		

Contact Set-5		Type: Entites: Friction Value: Advanced:	Penetration contact pair 2 face(s) 0.5
---------------	--	---	--

Contact/Friction force

Components	Х	Y	Z	Resultant
Contact Force(N)	0	-702.81	0	702.81
Friction Force(N)	5.064E-013	-8.0366E-030	-6.7828E-015	5.0645E-013

Contact Set-9		Туре:	Penetration contact
Contact Set-9	A A A A A A A A A A A A A A A A A A A	Entites: Advanced:	pair 2 face(s) Node to surface

Contact/Friction force

Components	Х	Y	Z	Resultant
Contact Force(N)	0	-11491	0	11491
Friction Force(N)	-636.33	7.1696E-015	-228.23	676.02

Contact Set-10	×	Type: Entites: Advanced:	Penetration contact pair 2 face(s)
----------------	---	--------------------------------	---

Contact/Friction force

Components	Х	Y	Z	Resultant
Contact Force(N)	28.519	11428	-117.92	11429
Friction Force(N)	-1870.1	4.9893	-457.32	1925.2
Contact Set-13	÷			e: No Penetratio n contact pair es: 2 face(s) ed: Node to surface

Contact/Friction force

Components	X	Y	Z	Resultan t
Contact Force(N)	-3.2474E-015	-1128.9	-3.0032E-014	1128.9
Friction Force(N)	-549.21	1.7304	-171.36	575.33

		Туре:	No Penetration contact pair
Contact Set-14		Entites:	1 edge(s), 1 face(s)
	X B	Advanced:	

Contact/Friction force

Components	X	Y	Z	Resulta nt
Contact Force(N)	26.924	11074	-111.32	11075
Friction Force(N)	-1805.7	4.0373	-440.56	1858.7

Component Contact-4		Components:	Bonded 2 Solid Body (s) Compatible mesh
------------------------	--	-------------	---

Mesh information

Mesh type	Solid Mesh
Mesher Used:	Curvature-based mesh
Jacobian points	16 Points
Maximum element size	19.2419 mm
Minimum element size	3.84838 mm
Mesh Quality Plot	High
Remesh failed parts with incompatible mesh	Off

Sum Z

-58.7709

Resultant

250

Resultant For Reaction for			
Selection set	Units	Sum X	Sum Y
Entire Model	N	-242.994	6.87689e-
			006
Reaction Mo	ments		

Selection	Units	Sum X	Sum Y	Sum Z	Resultant
set	Onits	Sum X			
Entire	N.m	0	0	0	0
Model					

Study Results

Name	Туре	Min	Max
Stress_Ansamblu	VON: von Mises Stress at Step No: 3(0.0475 Seconds)	8.867e- 004N/mm^2 (MPa) Node: 49337	2.056e+001N/mm^2 (MPa) Node: 62193
	Rel-1.0-Nonlinear-Stress	Stress Ansamble	

Name	Туре	Min	Max
Stress1_1	VON: von Mises Stress at Step No: 10(1 Seconds)	1.969e- 002N/mm^2 (MPa) Node: 49337	4.208e+002N/mm^2 (MPa) Node: 62193
	Rel-1.0-Nonlinear-Str	Anne Anne Marce Marce Marcel Anne Marcel Anne Marcel Anne Marcel Anne Marcel Ma	

Analele Universității din Craiova, seria Agricultură – Montanologie – Cadastru (Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series) Vol. XLVII 2017

Name	Туре	Min	Max
Stress1_4	VON: von Mises Stress at Step No: 10(1 Seconds)	1.969e-002N/mm^2 (MPa) Node: 49337	4.208e+002N/mm^2 (MPa) Node: 62193
	Water and State	entropy	
	L	100000 100000 100000 100000 100000 100000	
	Rel-1.0-Nonlir	near-Stress-Stress1 4	

Name	Туре	Min	Max
Stress1_2	VON: von Mises Stress at Step No: 10(1 Seconds)	1.969e-002N/mm^2 (MPa) Node: 49337	4.208e+002N/mm^2 (MPa) Node: 62193
	Markan San San San San San San San San San S	ne constant de la caractería de la caractería	
	人 Pol 1 0 Nonli	inear-Stress-Stress1_2	

Name	Туре	Min	Max	
Displacement_Ansamblu	URES: Resultant Displacement at Step No: 10(1 Seconds)	0.000e+000mm Node: 12176	2.275e+000mm Node: 8211	
	The second secon	A D A D A D A D A D A D A D A D A D A D		
	7			
Rel-1.0-Nonlinear-Displacement-Displacement_Ansamblu				

Name	Туре	Min	Max
Displacement1_3	URES: Resultant Displacement at Step No: 10(1 Seconds)	0.000e+000mm Node: 12176	2.275e+000mm Node: 8211
	With the second seco	2010 2010 2010 2010 2010 2010 2010 2010	

Name	Туре	Min	Max	
Rel-1.0-Nonlinear-Displacement-Displacement1_3				
Name	Туре	Min	Max	
Displacement1_1	URES: Resultant Displacement at Step No: 10(1 Seconds)	0.000e+000mm Node: 12176	2.275e+000mm Node: 8211	
Rel-1.0-Nonlinear-Displacement-Displacement1_1				

Name	Туре	Min	Max	
Displacement1_4	URES: Resultant Displacement at Step No: 10(1 Seconds)	0.000e+000mm Node: 12176	2.275e+000mm Node: 8211	
٨				
Rel-1.0-Nonlinear-Displacement-Displacement1_4				

Name	Туре	Min	Мах	
Displacement1_2	URES: Resultant Displacement at Step No: 10(1 Seconds)	0.000e+000mm Node: 12176	2.275e+000mm Node: 8211	
Rel-1.0-Nonlinear-Displacement-Displacement1_2				

Name	Туре	Min	Max
Strain1	ESTRN: Equivalent Strain	9.005e-008	1.325e-003
	at Step No: 10(1 Seconds)	Element: 26676	Element: 30722

Analele Universității din Craiova, seria Agricultură – Montanologie – Cadastru (Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series) Vol. XLVII 2017

Name	Туре	Min	Max
	Convertion (Expression) (Expression) (Expression) (Expression) (Expression) (Expression)		
		APPEN Vision and Vision and Vision and Vision and	
		600 m mi 1700 m mi - 4000 Min - 4000 Min	
		d a fa dei 19 de de 19 de de 19 de de 19 de de	
	*		
	Rel-1.0-Nonlinear-Strain-Strain1		

CONCLUSIONS

The highest stresses occur, as in case of longitudinal stresses, in the hinge areas of the engine chassis, respectively in the coupling pin between tractor and trailer, but higher in the first hinge pin in the chassis fastening element and the front, respectively the rear part of the bar (in relation to the bolt), which implies a reinforcement (optimization) of this area.

REFERENCES

[1]. Andrei Ionel, Cârdei Petru, Gângu Vergil, Muraru Vergil, Popa Cristian, Păunescu Dan, 2006 - Resistance analysis of the coupling system between tractor and trailer;

[2]. Biriş Sorin-Ştefan, Păunescu Dan, Vlăduţ Valentin, 2001 - Structural static analysis of lateral rods of the tractor suspension mechanism using finite element method;

[3]. **Biriş S.**, 1999 – Finite element method - *Applications in the construction of agricultural machinery*, PRINTECH Pub. House, Bucharest;

[4]. **Blumenfeld M.** 1995 - *Introduction to finite element method*, Technical Pub. House, Bucharest;

[5]. **Blumenfeld M. et al.** 1992 - Finite element method – Introductive applications and programs, U.P.B.;

[6]. Cârdei P., Sfiru R., Ciuperca R., Muraru V., 1999 - Structural analysis of the main elements, parts and machine asemblies, used in the construction of agricultural machinery. Verification and optimization of the means of transport structures in the field of agriculture, MCT contract;

[7]. Ciupercă R, Bodea C., Popa L, Dumitru A, Cândea Ioan, 2006- New coupling systems for agricultural and forestry tractors and machinery, harmonized with European standards, INMATEH Journal- vol. 17, Nr. 2/2006;

[8]. **Sorohan Şt.**, 1996 - *Finite element method in mechanical engineering - Programs and applications*, Part I, U.P.B.