

SOIL AND NUTRIENT LOSSES LIMITATION ON SLOPE LANDS, WITH THE HELP OF *BROMUS INERMIS* LEYSS. SPECIES

Simona DUMITRIU¹, Elena STAVARACHE¹, Ana-Maria DUDĂU¹,
Victoria MOCANU², Roxana-Patricia IONĂȘCU³,
Cristian-Sorin GAVRILĂ¹, Călin SĂLCENAU⁴, Mihai STAVARACHE¹

¹Research and Development Station for Meadows, Vaslui, 256, Stefan cel Mare street, Vaslui, 730006, Romania,

²National Institute for Research and Development in Pedology, Agrochemistry and Environmental Protection - ICPA Bucharest, Bucharest, Sector 1, Mărăști Avenue, no. 61, 011464, Romania

³Research and Development Station for Soil Erosion Control "Mircea Moțoc" Perieni, Bârlad-Bacău Road, km. 7, Perieni Commune, Vaslui County, 737405, Romania

⁴University of Craiova, Faculty of Agronomy, Craiova, Libertății Street, no. 19, 200421 Romania
author email: scdp_vs@yahoo.com

Corresponding author email: scdp_vs@yahoo.com

Abstract

Recently the soil erosion phenomenon, materialized by soil loss has been emphasized by climatic variations, namely the lack of precipitation over extended periods of time, the immediate effect being the diminution of the obtained yields. *Bromus inermis* Leyss. species is a very well adapted to conditions of prolonged drought, it resembles high densities (1000-1100 plants per square meter) and is a species with high perenniability (it can hold over 10 years in the crop), and it can be used as a cultivated species to protect the soil from erosion. The solid leaks from the 4 monitoring plots were determined, ranging between 3.16 t·ha⁻¹ at plot 2, cultivated with *Bromus inermis* Leyss. (100%) and 3.16 t·ha⁻¹ at plot 1, the uncultivated control plot (2025-05-30) and between 3.16 t·ha⁻¹ at plot 2, cultivated with *Bromus inermis* Leyss. (100%) and 3.16 t·ha⁻¹ at plot 1, the uncultivated control plot (2025-07-20). In the plots where the species *Bromus inermis* Leyss. was sown, solid leaks determined were by 33.5-56.7% (2025-05-30) and 56.7-65.4% (2025-07-20) lower than in the control plot. The largest losses of humus and soil nutrients were determined in plot 1 - control and plot 4 - *Onobrychis vicifolia* Scop. (100%), where adequate plants protection was not provided.

Key words: soil lost percentage, humus, NPK, plants density, plants height

INTRODUCTION

In recent years, the soil erosion phenomenon, materialized by soil loss (whose essential components for plants are the content of organic matter and mineral nutrients), has been emphasized by climatic variations, namely the lack of precipitation over extended periods of time. Prolonged drought affects the growth and development of plants in agricultural crops or grasslands, the immediate effect being the diminution of the obtained yields (Abdulle Y.A. et al, 2022; Chen Y. et al, 2023). Thus, after such critical periods, the

plant carpet no longer exerts the same anti-erosional protection on the soil, the plants being underdeveloped. Under these conditions, if torrential rains occur, significant amounts of soil are eroded, along with the organic matter and mineral elements contained in it (Bonthagorla U. et al, 2022; Chiurciu I.-A. et al, 2022; Akhatov A. et al, 2024; Radu A.T. and Burcea M., 2024; Samarinis N. et al, 2024).

Limitation of soil and nutrient losses through erosion fenomen under current climatic conditions can be done by three

methods: cultivation of species adapted to these conditions, cultivation of plants that resemble at higher times and cultivation of perennial species.

Bromus inermis Leyss. species it fits each of these three methods, being a very well adapted to conditions of prolonged drought, it resembles high densities (1000-1100 plants per square meter) and is a species with high perenniability (it can hold over 10 years in the crop).

The cultivation of this species together with the species *Onobrychis vicifolia* Scop., has advantages such as increasing the amount of nitrogen fixed in the soil and higher quality yields.

The researches carried out in the 2024-2025 agricultural year, within the Moara Grecilor location of the Research and Development Station for Meadows (RDSM), Vaslui, was represented by the analysis of the influence of *Bromus inermis* Leyss. and *Onobrychis vicifolia* Scop. species, grown alone or in mixture, on solid spills on slopes under the conditions of Moldavian Forest Steppe.

MATERIALS AND METHODS

The purpose of the study was to investigate the influence of *Bromus inermis* Leyss. species and *Onobrychis vicifolia* Scop., grown alone or mixed, on solid spills on slopes under the conditions of Moldavian Forest Steppe, through liquid and solid surface leak control plots.

The objectives pursued were solid leakage analysis, determination of nutrient losses from eroded soil (loss of humus, nitrogen phosphorus and potassium), as well as analysis of morphoprotective indicators (number of shoots/m², plant height) in plants in the first year of vegetation (starting year of the crop).

Four erosion control plots were placed:

- plot 1 - control: 150 m² (4 m × 37.5 m), maintained uncultivated;
- plot 2 - a₁: 100 m² (4 m × 25 m), cultivated with *Bromus inermis* Leyss. (100%);
- plot 3 - a₂: 100 m² (4 m × 25 m), cultivated with *Bromus inermis* Leyss.

(50%) and *Onobrychis vicifolia* Scop. (50%);

- plot 4 - a₃: 100 m² (4 m × 25 m), cultivated with *Onobrychis vicifolia* Scop. (100%);

As a biological material it was used at *Bromus inermis* Leyss. MIHAELA variety and *Onobrychis vicifolia* Scop. ANAMARIA variety, varieties created by RDSM Vaslui. In general, the agricultural year 2024-2025 was rainy, with precipitation in large quantities in some periods, but also with periods of water stress, the vegetation conditions being not ideal (figure 1).

During the agricultural period 2025-04-01 - 2025-10-07, at the weather station of RDSM Vaslui (Station I - Moara Grecilor locality), torrential precipitation was recorded, which produced liquid and solid surface leaks.

Table 1 presents situations where rainfall exceeded 3 mm over one hour.

The date of 2025-05-26, time interval 18-19:00:00, when 9 mm precipitation fell, causing surface leaks, liquids and solids.

Table 1. Liquid precipitation exceeding 3 mm within one hour at the RDSM Vaslui weather station

No.	date and time	mm
1	2025-05-26 01:00:00	3.8
2	2025-05-26 18:00:00	3.2
3	2025-05-26 19:00:00	9.0
4	2025-05-26 20:00:00	4.8
5	2025-05-27 20:00:00	4.2
6	2025-05-27 21:00:00	6.6
7	2025-05-28 01:00:00	3.2
8	2025-05-28 02:00:00	3.8
9	2025-07-18 00:00:00	6.2
10	2025-07-18 04:00:00	8.2

Source: Own data

Standards used to determine humus and nutrients in the lost soil:

- STAS 7184/21-82 for humus content;
- STAS 7184/2-85 for nitrogen content;
- STAS 7184/19-82 for phosphorus content;
- STAS 7184/18-80 for potassium content.

The analyses were performed at National Institute for Research and Development in Pedology, Agrochemistry and Environmental Protection - ICPA Bucharest, Bucharest

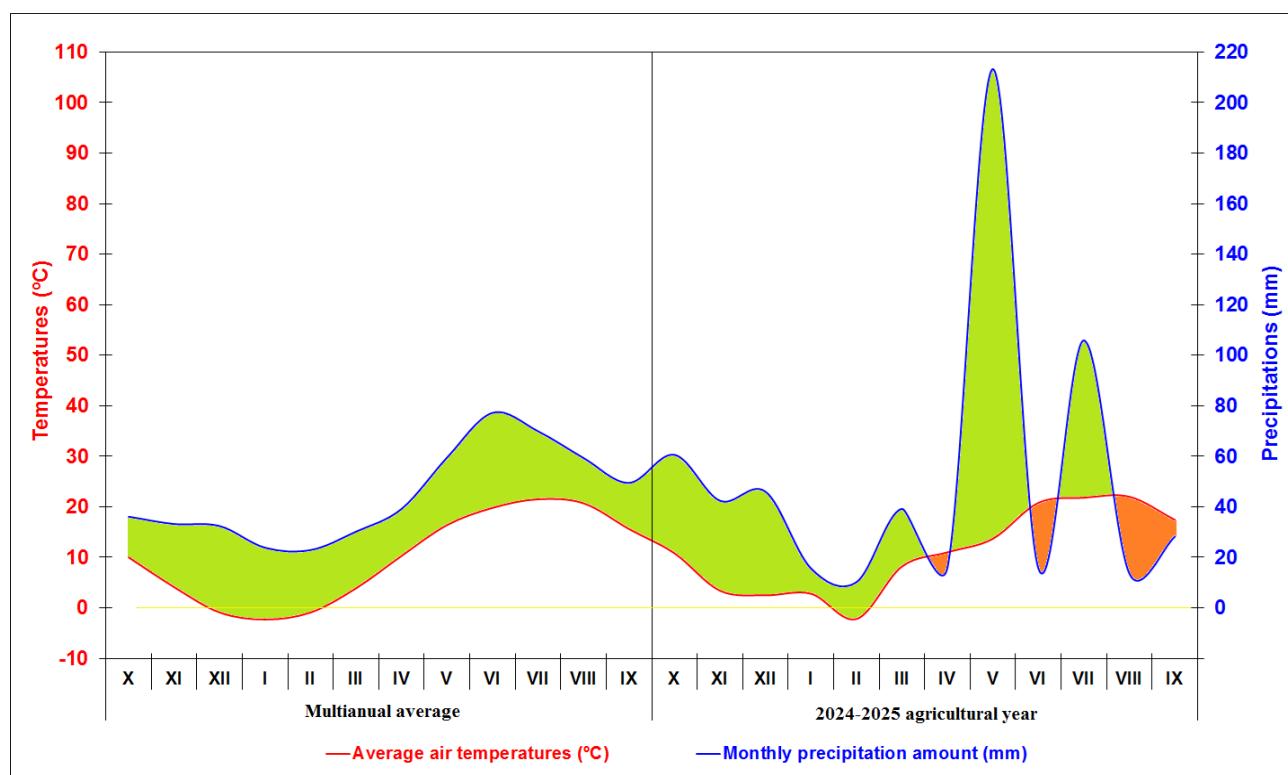


Figure 1. Climate conditions from the 2024-2025 agricultural year

Source: Own data, taken from RDSM Vaslui weather station (Station I - Moara Grecilor locality)

RESULTS AND DISCUSSIONS

On 2025-05-30, the solid leaks from the 4 monitoring plots were determined, ranging between $3.16 \text{ t}\cdot\text{ha}^{-1}$ at plot 2, cultivated with *Bromus inermis* Leyss. (100%) and $7.29 \text{ t}\cdot\text{ha}^{-1}$ at plot 1, the uncultivated control plot.

It can be noted that in the plots where the species *Bromus inermis* Leyss. was sown, solid leaks determined were by 33.5-

56.7% lower than in the control plot (table 2). The species *Bromus inermis* Leyss. is a stoloniferous species, which since year 1 of vegetation develops stolons and fixes the surface layer of the soil, limiting water erosion. These aspects were also noted for the solid leaks determined on 2025-07-20, when values determined were with 56.7-65.4% lower than in the control plot (table 3).

Table 2. Solid leaks measured at 2025-05-30

Plot No.	Plot surface (m ²)	Culture	Total solid leakage (t·ha ⁻¹)	Difference	
				t·ha ⁻¹	%
1 (Control)	150	Uncultivated	7.29	Control	100
2	100	a ₁ - <i>Bromus inermis</i> Leyss. (100%)	3.16	-4.13	43.3
3	100	a ₂ - <i>Bromus inermis</i> Leyss. (50%) and <i>Onobrychis viciifolia</i> Scop. (50%)	4.84	-2.45	66.5
4	100	a ₃ - <i>Onobrychis viciifolia</i> Scop. (100%)	6.81	-0.48	93.4

Source: Own data

Table 3. Solid leaks measured at 2025-07-20

Plot No.	Plot surface (m ²)	Culture	Total solid leakage (t·ha ⁻¹)	Difference	
				t·ha ⁻¹	%
1 (Control)	150	Uncultivated	0.24	Control	100
2	100	a ₁ - <i>Bromus inermis</i> Leyss. (100%)	0.08	-0.16	34.6
3	100	a ₂ - <i>Bromus inermis</i> Leyss. (50%) and <i>Onobrychis viciifolia</i> Scop. (50%)	0.11	-0.14	43.3
4	100	a ₃ - <i>Onobrychis viciifolia</i> Scop. (100%)	0.20	-0.04	82.7

Source: Own data

Physicochemical analyses were also carried out in soil samples determined on 2025-05-30 (table 4.) on the basis of which loss of humus and nutrients were calculated (table 5.).

The greatest losses of humus and soil

nutrients were determined in plot 1 - control and plot 4 - *Onobrychis viciifolia* Scop. (100%), where adequate protection was not provided, through a dense vegetation obtained by seeded culture.

Table 4. Analysis of solid leakage measured at 2025-05-30

Identification	pH (pH units)	Chemical analysis			
		Humus (%)	Total N (%)	P _{AL} (mg·kg ⁻¹)	K _{AL}
RDSM Vaslui - Moara Grecilor experimental field					
Plot 1 (Control)	6.91	1.75	0.204	31	278
Plot 2 - a ₁	6.28	2.60	0.115	16	179
Plot 3 - a ₂	5.88	3.02	0.175	19	227
Plot 4 - a ₃	6.76	2.99	0.201	18	229

Source: Own data

Table 5. Calculation of the loss of humus and nutrients from solid leaks measured at 2025-05-30

Plot	Humus	N	P	K	Lost soil	Lost Humus	Lost mineral elements		
	% t·ha ⁻¹				kg·ha ⁻¹				
Plot 1 (Control)	1.75	0.2040	0.0031	0.0278	7.29	127.6	14.9	0.23	2.03
Plot 2 - a ₁	2.60	0.1150	0.0016	0.0179	3.16	82.1	3.6	0.05	0.57
Plot 3 - a ₂	3.02	0.1750	0.0019	0.0227	4.84	146.3	8.5	0.09	1.10
Plot 4 - a ₃	2.99	0.2010	0.0018	0.0229	6.81	203.5	13.7	0.12	1.56

Source: Own data

The number of shoots determined at first cut ranged from 489 shoots·m² at *Onobrychis viciifolia* Scop. (100%) variant and 1612 shoots·m² at *Bromus inermis* Leyss. (100%) variant and at the second cut between 461 shoots·m² at *Onobrychis viciifolia* Scop. variant (100%) and 1549 shoots·m² at *Bromus inermis* Leyss. (100%) variant (table 6).

In the given climatic conditions, *Bromus inermis* Leyss. species had a better emergence.

Also, in the vegetation the *Bromus inermis* Leyss. species plants had a better

development. Thus, the plant height varied between 16.9 cm at *Onobrychis viciifolia* Scop. (100%) variant and 26.4 cm at *Bromus inermis* Leyss. (100%) variant, at first cut and at the second cut varied between 14.6 cm at *Onobrychis viciifolia* Scop. (100%) variant and 17.9 cm at *Bromus inermis* Leyss. (100%) variant (table 7).

The crops were highly riddled and the cleaning cuts made were carried out before weeds formed seeds or put the crop at risk.

Table 6. Determination of the number of shoots·m²

Culture	First cut - 2025-06-15		Second cut - 2025-07-29
	Number of shoots·m ²		
Uncultivated	-		-
a ₁ - <i>Bromus inermis</i> Leyss. (100%)	1612**		1549***
a ₂ - <i>Bromus inermis</i> Leyss. (50%) and <i>Onobrychis viciifolia</i> Scop. (50%)	1089		1016
a ₃ - <i>Onobrychis viciifolia</i> Scop. (100%)	489 ^{oo}		461 ^{ooo}
Average (Control)	1063 ^{Mt}		1009 ^{Mt}
LSD	0.5	336	171
	0.1	471	239
	0.01	665	338

Source: Own data

Table 7. Plants height (cm) measurement

Culture	First cut - 2025-06-15	Second cut - 2025-07-29
	Plants height (cm)	
Uncultivated	-	-
a ₁ - <i>Bromus inermis</i> Leyss. (100%)	26.4**	17.9**
a ₂ - <i>Bromus inermis</i> Leyss. (50%) and <i>Onobrychis viciifolia</i> Scop. (50%)	25.6*	17.2**
a ₃ - <i>Onobrychis viciifolia</i> Scop. (100%)	16.9 ^{ooo}	8.6 ^{ooo}
Average (Control)	23.0 ^{Mt}	14.6 ^{Mt}
LSD	0.5	2.1
	0.1	2.9
	0.01	4.1

Source: Own data

In figure 2 there are presented aspects from the experimental field (field

preparation, seeding and aspects from the vegetation period).

Figure 2. Aspects from the experimental field

Source: Own foto

CONCLUSIONS

On 2025-05-30, the solid leaks from the 4 monitoring plots were determined, ranging between $3.16 \text{ t} \cdot \text{ha}^{-1}$ at plot 2, cultivated with *Bromus inermis* Leyss. (100%) and $7.29 \text{ t} \cdot \text{ha}^{-1}$ at plot 1, the uncultivated control plot and on 2025-07-20 the solid leaks ranged between $0.08 \text{ t} \cdot \text{ha}^{-1}$ at plot 2, cultivated with *Bromus inermis* Leyss.

(100%) and $0.24 \text{ t} \cdot \text{ha}^{-1}$ at plot 1, the uncultivated control plot.

In the plots where the species *Bromus inermis* Leyss. was sown, solid leaks determined were by 33.5-56.7% (2025-05-30) and 56.7-65.4% (2025-07-20) lower than in the control plot;

The largest losses of humus and soil nutrients were determined in plot 1 -

control and plot 4 - *Onobrychis vicifolia* Scop. (100%), where adequate plants protection was not provided.

The number of shoots determined at first cut ranged from 489 shoots·m² at *Onobrychis vicifolia* Scop. (100%) variant and 1612 shoots·m² at *Bromus inermis* Leyss. (100%) variant and at the second cut between 461 shoots·m² at *Onobrychis vicifolia* Scop. variant (100%) and 1549 shoots·m² at *Bromus inermis* Leyss. (100%) variant because, in the given climatic conditions, *Bromus inermis* Leyss. species had a better emergence.

In the vegetation the *Bromus inermis* Leyss. species plants had a better development and the plant height varied between 16.9 cm at *Onobrychis vicifolia* Scop. (100%) variant and 26.4 cm at *Bromus inermis* Leyss. (100%) variant, at first cut and at the second cut varied between 14.6 cm at *Onobrychis vicifolia* Scop. (100%) variant and 17.9 cm at *Bromus inermis* Leyss. (100%) variant.

ACKNOWLEDGEMENTS

ADER 2023-2026: Proiect ADER 20.1.2 - Valorificarea superioară a terenurilor agricole supuse eroziuni prin conservarea resurselor de apă și sol în condițiile schimbărilor climatice.

REFERENCES

Abdulle Y.A., Hussein M.F., Mohamed A.M., Mohamud A.A., Osman F.I., Mohamuud B.A., Idris F.H. (2022) Effects of Soil Erosion on Crop Productivity in Afgoye,

Lower Shabelle Somalia. International Journal of Plant, Animal and Environmental Sciences. 12, pp 115-122

Akhatov A., Nurmatova V., Usmonova B. (2024) The influence of slope exposure, profile depth and erosion processes on changes in the content of potassium, phosphorus and humus in brown soils of mountain pastures of Uzbekistan. Yuzuncu Yil University Journal of Agricultural Sciences, 34(2), <https://orcid.org/0000-0002-4895-2372>

Bonthagorla U., Reddy T.S.K., Akash S., Srikanth H., Ahmed H. (2022) Effects of soil erosion and control: A review. The Pharma Innovation Journal, 11(6):2925-2933

Chen Y., Song X., Liu F., Dong Y., Zhang C., Ye M., Zhang G. (2023) Effect of land use on water erosion override impacts associated with climate. Ecosystem Health Sustainability, <https://doi.org/10.34133/ehs.0070>

Chiurciu I.-A., Dana D., Chereji A.-I., Chereji I., Jr, Voicu V., Firățoiu A.-R. (2022) Research on soil and nutrient losses through liquid runoff, in order to mitigate the climate risks to which Romania is exposed, in the Context of CAP. Earth 3, p:639-651, doi.org/10.3390/earth3020037

Radu A.T., Burcea M. (2024) Losses of soil through erosion to the chernozem subtype argic from the perimeter of the station for study of soil erosion located in the hill area of Buzău County, Romania In 2023. Scientific Papers. Series A. Agronomy, 17(1):189-196